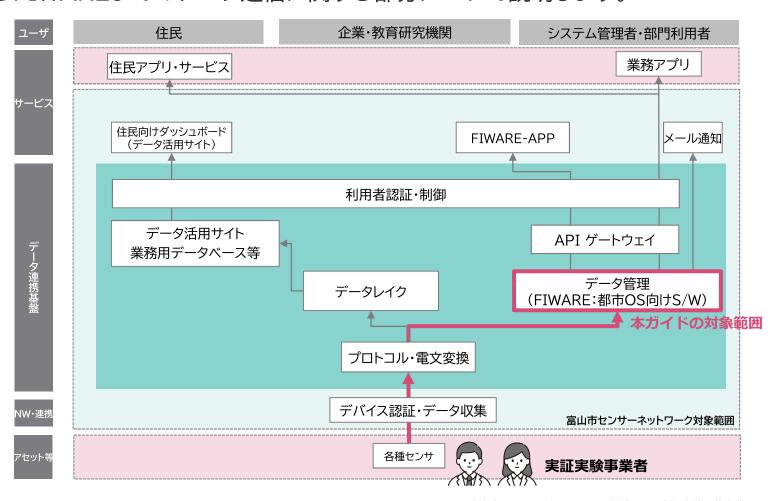
富山市センサーネットワークを利活用した実証実験 - 開発ガイド データ送信編 -

富山市スマートシティ推進課

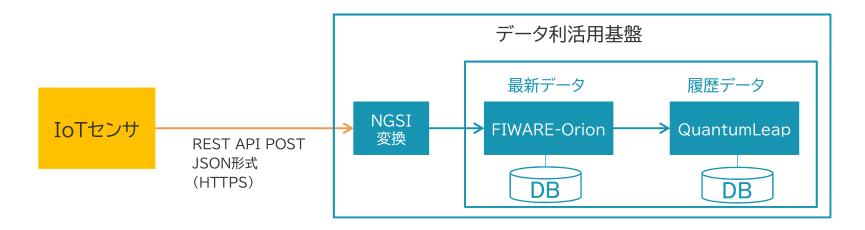
令和7年5月1日


目次

- 1. はじめに
 - 1-1. 本書について
- 2. データ送信について
 - 2-1. 概要
 - 2-2. データ利活用基盤の環境設定
 - 2-3. データ送信仕様
 - 2-4. インタフェース仕様書
- 3. 申請書の提出・お問い合わせ先

1.はじめに

1-1.本書の位置づけ


富山市センサーネットワークは以下のシステム構成となっています。本書では各種センサからFIWAREまでのデータ送信に関する部分について説明します。

2. データ送信について

2-1.概要

- 1. IoTセンサのデータは、データ利活用基盤で受信後、NGSIデータモデルに変換され、 FIWARE Orion Context Broker を介してデータベースに蓄積されます。 蓄積されるデータは最新データと履歴データがあります。
- 2. 本データ利活用基盤では、FIWARE Orionはversion 3.12.0 を使用しています。
- 3. NGSI は NGSI v2 データモデルを採用しています。

(参考資料)

FIWARE Orion: https://fiware-orion.letsfiware.jp/3.12.0/

NGSI v2: https://fiware-orion.readthedocs.io/en/1.14.0/user/walkthrough.apiv2/

2-1.概要

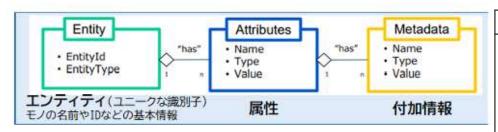
- 4. 富山市センサーネットワークで利用するデータ利活用基盤のデータ送信仕様は以下の通りです。
 - ✓ センサーやクラウドサービスからデータ利活用基盤へ REST API でJSON形式でPOSTしてください。
 - ✓ 通信プロトコルはHTTPSです。
 - ✓ **リクエストヘッダーにAPIキー**を設定してください。(APIの情報は富山市から提供します)
 - ✓ クライアント側はSSL証明書や公開鍵は不要です。

詳細は、

「2-3.データ利活用基盤の環境設定」

「2-4.データ送信仕様」

を参照してください。


5. データ利活用基盤をご利用の際は、センサから送信するデータの仕様を「インタフェース仕様書」に記載して提出してください。

(詳細「2-5.インタフェース仕様書」を参照)

6. 申請書を受理しましたら、IoTセンサデータを受信できる環境を整え、API等の情報を申請者へ提供します。

2-2.データ利活用基盤の環境設定

- 1. データモデルの定義
 - ✓ 受領したインタフェース仕様書を元に、FIWARE-Orionへデータを渡すため 「データモデル」を定義します。
 - ✓ データモデルはNGSI v2を採用しています。
- 2. NGSIデータモデル
 - ✓ 下図に示す通り、NGSIはエンティティ(Entity)、属性(Attribute)、附属情報(Metadata)の3つの要素で構成されます。
 - ✓ NGSIによって多様なサービス間でのデータの相互運用が可能となります。

要素	概要
エンティティ (Entity)	物理的もしくは論理的なモノ(センサー、人間、部屋など)を表す概念。 EntityId(以下「id」)、EntityType(以下「type」)、属性(Attribute)を持つ。各エンティティは、idとtypeの組み合わせで一意に識別可能にする必要があります。また、エンティティは、当該エンティティに関連する複数の属性を持つことができます。 ※属性(Attribute)は任意。
属性 (Attribute)	エンティティが持つ性質(名称、場所、情報など)。 属性名(name)、属性型(type)、属性値(value)と、付加 情報(Metadata)を持ちます。 ※付加情報(Metadata)は任意。
付加情報 (Metadata)	属性値への付加情報(属性値の計測時刻など)。 メタデータ名(name)、メタデータ型(type)、メタデータ値 (value)を持ちます。

出典)一般社団法人データ社会推進協議会 FIWARE Orion利用手順書

https://data-society-alliance.org/wp-

content/uploads/2024/02/6.Orion%E5%88%A9%E7%94%A8%E6%89%8B%E9%A0%86%E6%9B%B8 20240301 v1.2.0.pdf

2-2.データ利活用基盤の環境設定

2. NGSIデータモデル (つづき)

- ✓ 下表に示す通り、NGSIはエンティティ(Entity)、属性(Attribute)、附属情報(Metadata)の 3つの要素で構成されます。
- ✓ 「気温(temperature)」と「気圧(pressure)」という2つの属性を持つ「部屋(Room)」という エンティティをNGSIで表現した場合の例を以下に示します。 ここでは、部屋という概念をエンティティタイプ「Room」で、部屋の識別子をエンティティIDの 「Room1」「Room2」で表しています。 また、部屋の属性として、小数型(Float)のデータを持つ「気温(temperature)」と、整数型 (Integer)のデータを持つ「気圧(pressure)」の2つの属性を定義しています。

Entity							
id type		Attribute					
10	type	name	type	value			
Room1	Room	temerature	Float	23.0			
		pressure	Integer	1020			
Room2 Room		temerature	Float	21.0			
		pressure	Integer	1010			

出典)一般社団法人データ社会推進協議会 FIWARE Orion利用手順書

https://data-society-alliance.org/wp-

content/uploads/2024/02/6.Orion%E5%88%A9%E7%94%A8%E6%89%8B%E9%A0%86%E6%9B%B8 20240301 v1.2.0.pdf

2-2.データ利活用基盤の環境設定

- 3. IoTセンサのデータを受信する環境の設定
 - ✓ データモデル定義の単位でエンティティタイプを設定します。 エンティティタイプはセンサの種類1つにつき1つ作成します。 同種のセンサ(データ送信項目が同じ)は同一のエンティティタイプとします。
 - ✓ ドライバとエンティティタイプは1対1の関係です。
 - ✓ センサ毎にドライバを作成し、データを受信した後のデータ経路やNGSI変換等を行えるようにします。
 - ✓ IoTセンサのデータ送信先は、1つのドライバにつき1つ決まります。 なお、この宛先は他のドライバと重複しません。 例) 水位計と雨量計の別々のセンサがある場合、水位計と雨量計で別々の宛先を用意します。 水位と雨量を1つのセンサとしてデータを送信する場合、ドライバは1つとし、宛先は1つ用意します。
 - ✓ データの接続確認やメール通知を行うFIWARE-APP(ウェブアプリ)はエンティティタイプ単位で権限 を管理しています。権限を分ける場合はドライバを2つ用意します。
 - ✓ エンティティIDは、富山市のテナントコードとエンティティタイプ名、センサーから送られてくるIDとを 組み合わせた形式でFIWAREで管理されます。
 - 一意の値である必要があるため、センサーから送るデータのIDは、センサー毎に割り当ててください。

エンティティIDの例)

jp.toyama.toyama.smart.city.WaterLevel.100

富山市のテナントコード

エンティティタイプ名

センサのID

2-3.データ送信仕様

センサーのデータ送信の仕様は次の通りです。仕様に沿ってデータ利活用基盤と接続してください。

■API仕様:基本情報

プロ	トコル	REST API(HTTPS)			
メソッド POST		POST			
データ形式 JSON					
URI	URL				
	基本形	https://{アカワ	ウント名}-receive.{ドメイン名}/v1/{テナント名}/{データ種別}		
	(例)	https://account123-receive.sample.com/v1/city99999/sample-device			
リク	リクエストヘッダー				
	x-api-key	APIキーの文字列			
	Content-Type	application/json			
リク	リクエストボディ				
	JSONデータ ※要件に応じて個別に定義。送信可能なデータは128KBまで。				
レス	ポンス	ステータスコート゛			
	成功	200	{"message":"OK","traceId":"a407fabc-747a-c030-346a-5fe349c247df"}		
	パス誤り	403	{"message":"Missing Authentication Token"}		
	認証エラー	403	{"message":"Forbidden"}		
	リクエスト制限超過	429	{"message":"Limit Exceeded"}		

2-3.データ送信仕様

■リクエスト例

2-4.インタフェース仕様書

インタフェース仕様書とは、IoTセンサ等からのデータをデータ連携基盤へ格納するために必要な情報を記載する資料です。

■「1 富山市センサーネットワーク 各種申請書.xlsx」-「インタフェース仕様書(連携内容)」シート

^{富山市センサーネットワーク} インタフェース仕様書			
■連携仕様 連携仕様について下表に従って記載してください。		データ →セン	名、データ送信件数 タ計測・送信間隔 ンサの仕様やリクエスト数を把握するために必
論理名		要な情報です。	
データ計測間隔(センサーでデータを計測する時間の間隔) データ送信間隔(センサーからデータを送信する時間の間隔)			
データ送信件数 (一度の送信でセンサーから送られるデータ件数)	-		
■権限設定			
FIWARE-APPでFIWAREに登録されたデータの確認、各デバイスに対す	-るメール	通知を設り	
権限は「ユーザアカウント利用申請書」で作成したグループ単位で割り メール通知設定を編集する場合は「編集可能」権限が必要です。	リ当てます	→センサデータをFIWARE-APPで確認する	
グループ名			要な権限設定です。

→次ページに続く

2-4.インタフェース仕様書

インタフェース仕様書とは、IoTセンサ等からのデータをデータ連携基盤へ格納するため に必要な情報を記載する資料です。 データモデル定義設定 →センサデータをデータ連携基盤へ格納するために必要な設定情報です。 データモデル定義への登録有無 →データ連携基盤へデータを格納する項目を選択します。 履歴蓄積 ■「1 富山市センサーネットワーク 各種申請書、xlsx」 →データ連携基盤へ履歴を蓄積する項目を選択します。 -「インタフェース仕様書(連携内容)」シート 履歴登録トリガー ■連携項目 →履歴を蓄積するトリガーとなる項目を設定します。 設定した項目の値に変更があったタイミングで履歴データが蓄積されます。 連携項目について下表に従って記載してください。また、POST bodyの例も記載してください。 ペイロードデータを送信する場合は、変換仕様書を添付もしくは本設計書にシートを追加し変換規則をご記入ください。 連携項目 →センサからデータ連携基盤へ送信される項目を 記入してください。 ダッシュボード設定 →ダッシュボード表示に必要な設定情報です。 POST body(例) CSV出力 →センサからデータ連携基盤へ送信される →データモデル定義へ登録した項目のうちCSVでデータを抽出したい項目を選択します。 JSON形式のbody例を記載してください。 グラフ表示 →グラフ表示(Y軸)するかを選択します。グラフは1項目につき1グラフです。 複数の項目を選択した場合は個々のグラフが作成されます。

3. 申請書の提出・お問い合わせ先

各種申請書はメールで下記までご提出ください。 ご不明点やご質問も下記までお問い合わせください。

お問い合わせ先:

富山市スマートシティ推進課

Tel:076-443-2006

Mail:smartcity-01@city.toyama.lg.jp